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ABSTRACT

A procedure has been set up to calculate the transient temperature distribution on the
surface of a reentry vehicle (RV), with simulation of aerodynamic heating in the free-
molecule, transition, and laminar (continuum) flow regimes, one-dimensional transient heat
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conduction into the heat shield, and reradiation.

i The procedure is exercised to determine the altitude dependence of the surface
. temperature at various points on a particular RV configuration for an example ballistic
trajectory for a range of emissivities.
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I. INTRODUCTION AND SUMMARY

In support of POET analysis of the detection and acquisition ranges of a two-color
sensor on a terminal-based interceptor, a procedure has been set up to calculate the transient
temperature distribution on the surface of a reentry vehicle (RV). The example exercise of
the procedure provided here is for an RV with a reference ballistic coefficient of about 1500
1b/ft2 reentering at a reentry angle near 25 deg on a ballistic path with a range of about
10,000 km to impact (a reentry velocity of about 23,150 ft/sec). The inputs to the IDA
RANGE trajectory program that were used to characterize the hypothetical RV are the
following:

Cone half angle = 10 deg,

Ratio of hemisphere cross-sectional area
to reference area = 0.041, Vs (not to scale)

Ratio of base area to reference area = 1.00,

=0.077 i
ReodIm o

1.8m

Ratio of surface area to reference area = 5.76, --
Mass = 750 1b, and

Reference area = 4.55 ft2.

These numbers are consistent with a nose radius of about 3 in. (0.077 m) and an
overall length of about 5.9 ft (1.8 m). The reference ballistic coefficient is in effect defined
using the hypersonic inviscid drag coefficient, i.e., that for velocities above about Mach 10
where the base drag coefficient has diminished to negligible values and for altitudes below
about 200 kft where the skin-friction drag coefficient has diminished to negligible values
(IDA, 1969). At lower Mach numbers and at higher altitudes, the overall drag coefficient
generally increases above, and the ballistic coefficient decreases below, the reference value.
The reentry angle is defined as the path angle measured from the horizontal at an altitude of
400 kft.

The results of the example calculations, considering free-molecule or continuum-
flow (laminar) acrodynamic heating in the appropriate altitude regimes (with "bridging" in
the transition between them), reradiation with an emissivity of 0.25, and one-dimensional
transient heat conduction into a glass-fiber-phenolic heat shield, indicate that the stagnation

1
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point on the nose reaches the "ablation” temperature, arbitrarily taken as 2000 K, at an
altitude of about 260 kft, and that the surface of all of the conical body passes through a
temperature of 1000 K at an altitude of about 250 kft and reaches the "ablation” temperature
at an altitude of about 200 kft.
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II. ANALYSIS

The principal questions addressed by the analysis were the following:
(1) What governs the input heating at different points on the RV?
(2) What governs the thermal response of the RV surface?

Considerations involved in (1) include the determination of (a) the functional
dependences, and altitude regions of applicability, of free-molecule heating and laminar
convection at the stagnation point, (b) the flight conditions on the particular reentry
trajectory as a function of time, and (c) the heating distribution at points other than the
stagnation point on a hemisphere-cone body.

Considerations involved in (2) include determinations of (a) the transient thermal
response, i.e., time-dependent heat conduction into the heat-shield material, (b) typical
physical properties of a glass-fiber-phenolic ablative heat shield, and (c) the dependence of
surface temperature on emissivity (a discretionary, not inherent, property of the surface).

The heat transfer rate at the stagnation point in the free-molecule flow regime, qem,
i« given in Gilbert and Scala, 1965, as

apy =3P Ve (1 + 251 s.,} fe-Ib/(E sec)
where
a = accommodation coefficient (taken as 1.0)
Poo = local free-stream atmospheric density (slug/ft3)
V., = vehicle flight velocity with respect to the local atmosphere (ft/sec)

Seo = M.[V2

vehicle flight Mach number

i

ratio of the specific heats of air.
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For Mach numbers of 16 or greater (typical of the heating regime of interest for reentry-

vehicle detection and tracking), the molecular-speed correction term [l/[ZJE S,,D has a

value less than two percent.

Ignoring the molecular-speed correction term, and changing the units to more
convenient (for comparison with laminar heat-transfer below) values, the formula for free-
molecule heating at the stagnation point becomes

3

6(P= )| Voo 2
qFM=1.528xlO Po 104 Btu/(ft°sec) ,

where pg is the atrnospheric density at sea level.

The here-adopted empirical correlation® for the hypersonic laminar (“continuum")
heat-transfer rate at the stagnation point, q , is (per IDA, 1966, p. 22, leaving out for the
moment a factor depending on surface temperature which is close to 1 for most cases of
interest)

v 3.15
=865 [P [4] Bu/(fe® sec) ,

LT R Ve Liof

where Ry, is the hemispherical-nose radius in feet. The missing correction factor, involving
the flight velocity and a value of the yet-to-be-determined surface ("wall") temperature Ty,
is

l-vf.- 6.75 x 10° (T, /289)
| Va-675x10° |

where Ty, is in degrees Kelvin. This factor will be included later in the transient analysis,
in which a value of the wall temperature becomes available.

The above two formulas for the stagnation-point heating in the free-molecule regime
(qrMm, varying as p,,) and the laminar flow regime (qy, varying as «/P—-) yield the same
value at a "crossover” altitude, defined by a "crossover" atmospheric density pc given by

PP, =(2.0230 x 107/, ) V22

»

This correlation is in numerical agreement with that of Detra, Kemp, and Riddell as validated with data
in Perini, 1975.
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The crossover altitude for an Ry of 3 in. and a V,, of 23,000 ft/sec (typical of the example
ballistic missile trajectory) is about 303 kft for the 1962 Model Atmosphere used in
RANGE.

In the transition regime between free-molecule and laminar heating the effective
heating q is assumed to vary in a smooth way, without a sudden discontinuity in slope, and
is typically faired between the two regimes with a "bridging" function (see Matting, 1971).
In this analysis we adopt a general bridging relation that preferentially weights the lesser of
the two values according to

1 1 -1/n
I SIS O 9em/9,
a:[n + n} =qL m/l"

[1+ @pyfa)"]

im °

where
qFMj q =+ Pl Pc

A plot of the transition behavior of §/q; (where qc is the value from either heat-transfer
relation when p,, equals p¢) as a function of p../p¢ for this general bridging relation, for

values of n of 1 and 2, is shown in Figure 1, with transition using the Matting (op. cit.)
bridging function included for comparison. A value of 2 for the exponent n is chosen in
subsequent analysis here; some other value (e.g., 1.6) could be easily substituted when
better data (than those included in Matting, 1971) become available.

If the convective heat-transfer rate q is expressed as an equivalent radiation rate of a
surface with an emissivity ¢ = 1 and no thermal inertia (or no heat conduction), an
equivalent radiative-equilibrium surface temperature, Teq, can be used to characterize the
acrodynamic heating. The following formula to give this Teq (in degrees Kelvin) from local
flight conditions was derived from the above equations for q (with n = 2), and has been
incorporated in the RANGE trajectory program:

1/4
Ty = 1000 173.4 [Gp P IpONTHo IR (VN0 (Rr |

The output value of this Teq from RANGE is used to describe the aerodynamic
heating, as 6Teq? [0 = 5.672 x 10~12 watt/(cm2 K4)], in the subsequent transient heat-
conduction analysis, in conjunction with the wall-temperature correction factor that uses the
corresponding output value of flight velocity from RANGE. The aerodynamic heating, in
terms of this "inertialess” radiative-equilibrium stagnation-point temperature (consistent

5
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with an assumed wall temperature of 289 K) for the desired reentry trajectory is shown in
Figure 2. The flight velocity for the wall-temperature correction factor (incorporated in the
transient analysis where the wall temperature is determined) varies only between extremes
of 22,960 and 23,440 ft/sec in the descent from 547 kit to 127 kit in the example reentry
trajectory. ‘

At points other than the stagnation point on a hemispherical nose, the heat transfer
rate q drops off with angle around the hemisphere from the stagnation point as shown in
Figure 3. (The influence on heat transfer at a downstream point by the evolution of gases
from an upstream point into the boundary layer is not considered.) The heat transfer on the
conical surface is assumed to be constant at the value at the shoulder, based on the
constancy of pressure on a conical surface (NAVWEPS, 1961, p. 154) and the one-to-one
correspondence of heat transfer with pressure (Detra and Hidalgo, 1961, Fig. 1 therein).
From the curve in Figure 3, the relative heat-transfer rate q/qs (where qs equals the q
above) as a function of distance s from the stagnation point for our 0.077-m-radius-
hemisphere/10-deg-cone body is given in the following table:

sR.deg Qs Sm
0 1.0 0.000 (stagnation point)
20 0.93 0.027
40 0.72 0.054
60 045 0.081
80 0.22 0.108-1.858 (shoulder and conical surface)

The transient behavior of the surface temperature is computed by the TRIDE
program (IDA, 1974) from the input heating-rate history derived from the RANGE
inertialess radiative-equilibrium stagnation-point temperatures (Fig. 2). The TRIDE
computer program (reproduced in the Appendix) is a numerical solution of the one-
dimensional® time-dependent heat-conduction equation

ar_k 3T
ot P gx2

E ]

The adequacy at one-dimensional versus two-dimensional analysis will be addressed by comparing the
magnitudes of the gradients in the two directions, normal to the surface and paralle] with the surface. If
the gradient (i.., heat flow) along the surface is small in comparison with the gradient into the surface,
its neglect in the heat flow analysis is acceptable.
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using the implicit-differencing technique (see Appendix). The calculation treats an infinite
plate of finite thickness heated on one side and insulated on the other. At each time step
(one-second interval) the aerodynamic heating, in terms of equivalent radiation at the
inertialess temperature Teq corrected with a surface ("wall") temperature factor, is absorbed,
some is reradiated according to the surface temperature Ty, and the emissivity e, and the
remainder is conducted inward to raise Ty and the internal temperature, according to the
boundary condition

aT 4 = z GTA
k____cl + e .
ax eq[ vz.,— 6.75 X 106 v

The Ty, used in the reradiation term and in the correction factor is extrapolated to the present
instant by means of a cubic extrapolation from the four previous values. The temperature
within the thickness of the plate is computed at 10 points, the centers of 10 equal
subdivisions, e.g.,

] L) \ ]
GN\ . ‘ N ' ' \ N ' !
od}'n ' ' ) ' . ) \ N ’
arn: ' ' \ ' '
e R S A A R R
® .0 .,0.0.0.0'0.0 0.0 insulated
' ) ' ' N \ . \ X back face
102:¢3'4.:5'86.7'8.9"10
VN A R A
4 : ] : ] : ] : [} :
eoT,, < thickness x
TW

The thickness chosen for the calculations here is small enough to provide adequate detail in
the temperature contour but large enough to include all the material that may experience a
temperature rise during the period of interest. The thermal conductivity k, heat capacity c,
density p, and emissivity e are constants in the calculation. When the material in the first
cell reaches the "ablation” temperature, taken arbitrarily as an even 2000 K, the calculation

is stopped.

The physical properties for "glass-fiber phenolic" for purposes of this introductory
exercise were taken from the Handbook of Materials Science, Vol. 111, p. 34, and are the
following (temperature dependences were ignored):

k = 0.20 Btu/(hr ft F) = 0.000826 cal/(cm sec C),

¢ =0.30 Btu/(Ib F) = 0.30 cal/(gm C), and

p = 1.825 gm/cm3.

10
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For these values and the experienced heating rates, a thickness of 0.5 cm is found to be
appropriate; i.e., the back-face temperature at 0.5-cm depth starts to rise at about the time
that the front-face temperature reaches the assumed temperature of ablation,

The emissivity is a parameter of choice by the RV designer depending on his
selection of an external coating, and is varied in the family of calculations over the range of
0.25 to 1.0.

11
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III. CALCULATIONAL PROCEDURE

As a recapitulation of the analysis described above, the calculational procedure is

made up of the following steps:

1. Convert flight-vehicle characteristics to RANGE inputs.

2. Run RANGE to provide the stagnation-point aerodynamic heating, expressed
as an equivalent inertialess radiative-equilibrium temperature, and the flight
velocity as functions of time and altitude.

3. Select appropriate values of conductivity, heat capacity, density, and thickness
of the vehicle's heat shield. (The material properties can be temperature
dependent.)

4. Insert heat-shield properties and second-by-second values of the stagnation-
point aerodynamic heating, i.e., the inertialess radiative-equilibrium
temperature, and flight velocity in TRIDE.

5. Select values of the ratio to the stagnation-point heating for the heating at
desired points on the vehicle.

6. Run TRIDE to give the time dependence of the temperature profile within the

wall of the heat shield for the heat-transfer ratios at the desired points. Adjust
the thickness of the heat shield so that the temperature of the back face would
just start to rise at the end of the period of interest, and return to step 4, above.

12
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IV. EXAMPLE RESULTS

The temperature history on the RV surface at the stagnation point and on the
shoulder and conical surface, calculated by the procedure outlined above, is plotted as a
function of altitude and time in Figure 4. For a surface emissivity of 0.25, the temperature
at the stagnation point passes through 1000 K at an altitude of about 290 kft and reaches the
"ablation" temperature (taken as 2000 K) at about 260 kft; the temperature at the shoulder
and on all the conical surface passes through 1000 K at about 250 kft and reaches the
“ablation” temperature at about 200 kft. -

The temperature distribution on the RV surface at altitudes S seconds apart is
shown in Figure 5 for an emissivity of 0.25. The contour at the crossover between free-
molecule heating and laminar convection is indicated by the dotted curve. The steepest
slopes of the contours along the surface (just before the shoulder on the hemisphere) are
only 2 to 3 percent of the internal temperature gradients just within the surface at the
shoulder, shown in Figure 6; two-dimensional calculations should show little change from
the one-dimensional results.

The dependence of surface temperature on emissivity for the baseline RV and
trajectory at four altitudes is given by the following table (in degrees Kelvin):

emissivity = 025 050 075 100
stagnation-point temp at 295.8 kft (90.17 km) 886 876 866 857
stagnation-point temp at 266.3 kft (81.18 km) 1857 1725 1626 1542
conical-surface temp at 246.6 kft (75.18 km) 1021 1001 984 969
conical-surface temp at 207.1 kft (63.13 km) 1890 1746 1654 1592

The fairly weak dependence of surface temperature on emissivity indicates that reradiation
plays a smaller part than conduction in dispersing the acrodynamic heating from the RV
surface, even with the low conductivity of glass-fiber phenolic.

13
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Figure 5. Temperature Distribution on ICBM RV Surface at Different Altitudes
(asrodynamic heating; one-dimensional heat conduction In
» glass-fiber phenolic; emissivity = 0.25)
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V. OBSERVATIONS

Inclusion of the effects of transient heat conduction produces a dependence of total
emittance on emissivity; total emittance would be independent of emissivity if conduction
were ignored.

The values for the total gray-body emittance (e6T%) for the temperatures in the table
in the EXAMPLE RESULTS are

emissivity = 0.25 Q.50 Q.75 1.00
Total Emittance (wat/cm?) at

stagnation point at 295.8 kft 0.87 1.67 2.39 3.06
stagnation point at 266.3 kft 16.86 25.11 29.74 32.07
conical surface at 246.6 kft 1.54 2.85 3.99 5.00
conical surface at 207.1 kft 18.09 26.36 31.84 36.43

As emissivity is reduced, the total emittance (the integral over the gray-body
spectrum) decreases, even though the temperature increases. (If conduction had been
ignored, esT4 would have been independent of e and would have been just 6Teg?,
i.e., equal to the acrodynamic heat-transfer rate.) The energy received by a broad-band
detector, such as a bolometer, would decrease by a factor of two or more as the emissivity
is reduced from 1.0 to 0.25. For a detector sensing in a wavelength band beyond the
wavelength of greatest spectral emittance, Amax (given by Wien's displacement law:
Amax T =03 cmK; e.g., Amax = 3 um for T = 1000 K), the ratio of the energy in that
band to the total energy would decrease as the temperature is increased, so the spectral
emittance (watt/(cm2K)) would decrease even faster than the total emittance as the
emissivity is reduced.

On the basis of this argument, an RV designer desiring to minimize the detectability
of his RV would choose a surface coating with the lowest practicable emissivity up to the
temperature at which the surface starts to break down and evolve gases.
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IMPLICIT DIFFERENCING TECHNIQUE
(adapted from Richtmyer and Morton, 1967)

Diffusion Equation
front back
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Equivalent Difference Equation

1
TTA: - -% 2(Ax)’ [(Ta 2T ) (1?111_21‘;‘*‘+1‘}‘_’”1’ﬂ
o
@ T (B, Jo -y
AN )
: Vi

so the new temperatures, at the next (n + 1st) time step in terms of values at the nth time

step, are
‘ 3) a 'I’; -(a+ 1)1" +a '1“"’1 =V} .
If we assume there exists a recursion formula for Tj41 such as
@) T;M = c;‘ T'.J:l + d;' (compute T in ascending j) .
'
A2 ?
: :




then (3) becomes
1 1 +1 _ "
a ’I’J':l - (2a+1) T}” +% (T? dj)=\v;‘
j
1_1 a | +1 (‘V;‘ d;l \
+ S— —
or T;:-l =? 2a+1 —-c—n-)']f:l + I + > I
j L i)
\_7_.-/ ;__V_J
cr 4t
i+ i+1

so the recursion formulas for ¢, d are

c}’ =a/{2a+l - ac}‘H)

(compute c, d in descending j)
@ = c'.'(ad’.‘ -y}
] SRR ]

Boundary Conditions

. - - . : _10l
ack: T,,=¢4 Tt 45, =Ty (insulated wall at j = 107)

0 .0 = 0 _ N
- d;=0;¢,=1 - cjp=al(a+l) ; d(;o“"’(l)o /a ...

T, = (3'1'0 + 6’1“ - Tz) /8 (quadratic interpolation)

Verification

The implicit differencing numerical procedure used in the TRIDE program (copy
appended) was checked against an analytical solution* to the diffusion equation, for a
constant heating rate H, a thickness b, and a diffusivity D = k/cp, which is

*  Supplied by Dr. Irvin W. Kay.
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2

n=1 n

The procedure with a Ax = b/10 (as above) and a At = 0.1 sec reproduced the values given

by the analytical solution to within 1 degree (out of < 300) at all points at all times. For a
At = 1 sec, it became obvious that the temperatures given by the numerical procedure were

0.5 sec behind the analytical solution (with the same ~ 1 deg accuracy); the initial time step
is At/2. Changing the Ax to b/100 from Ax = b/10 for At = 1 sec did not change the wall

temperatures by more than 1 degree after the first time step.
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PROGRAM TRIDE 'RV-HEATING W/WALL TEMP CORR 8/1%/90

DIMENSION T(12), €(12), D(12), P(12)

DIMENSION TEQ(44), ALT(44), VEL(44)

DATA TEQ/130.,142.,154.,169.,183.,200.,218.,237,,2%9.,282., 308.,
& 333..366..399.,439.,47%5.,328.,%76.,636.,711., 79%.,889.,999.,

. & 1127..1264.,1414.,1575,,1729.,1863..2039., 2186.,2324,,24%9.,
. & 2592.,2724.,28%6.,2992.,3135.,3281.,3436., 3601.,3788.,3993.,
& 4214./

DATA nlLT/547.5,537.9,328.4,518.8,509.2,499.6,490,0,480.4,470.8,
& 461.1, 451.5,441.8,432.2,422.5,412.8,403.1,393.4,383.7,374.0,

& 364.3, 354.5,344.8,333.0,325.2,315.4,305.6,295.8,286.0,276.2,
& 266.3, 256.5.246.6,236.8,226.9,217.0,207.1,197.2,187.3,177.4,
& 167.3, 157.5,147.6,137.7,127.7/

DATA VEL/22960.,22973.,22986.,22998.,23011.,23024,,23037,,230%0.,
& 23082.,23075., 23086.,23101.,23114.,23127.,23140.,231%3.,23166.,
& 23179.,23192.,23209., 23218.,23231.,23244.,2325%7,,23270,,23203.,
& 23296..23310.,23322.,23336., 23348.,23361.,23374,,23386.,233986.,
& 23409.,23419.,23428.,23435.,23439., 23440.,23434,,23419.,23388./

102 FORMAT(4X, 3HALT, SX, 2HTW, 4X, 2HT1, 4X, 2HT2, 4X, 2HT3, 4X,
& 2HT4, aXx, 2HTS, 4X, 2HTe, 4X, 2HT?, 4X, 2HT8, 4X, 2HTY9, 4X,
& 3WT10)

Pl = 3.1413926536

816G = 3.672E-12/4.186

EM = 0.25

XK = 0.000826

cCP = 0.3

RHO = 1.82%

Ta = 2000.

TO = 300.

X = 0.5

OT = 1.

DX = X/10.

103 FORMAT(2X, 11H INPUT HFAC)
1 CONTINUE

TYPE 103

READ(S,%*} HFAC

IF(HFAC .EQ. 0.) GO TO 929

TYPE 102

po I =1, 12

T(1) = TO

END 00

TW = TO

c(12) = 1.

D¢12) = 0.

00 10 K = 1, 44
THX = TW

IF(K LEGQ. 3) TWX = 2, % TW - TWP

IF(K .EQ. 4) TWX = 3. * TW - 3. * TWP

IF(K .GT. 4) ThX = 4, * TH - 6. * TWP . TWPP - TWPPP

IF(TWX .GE. (TA=-%0,)) GO TO 1

THC = TWX

QG = SIG * HFAC * (TEQ(K))**4 *

& (VEL(K)®EL(K) = 6.73E6 * TWC/289.)/(VEL(K)*VEL(K) - 6.75E6)

H= (=Q + EM * SIG * ThiX#%k4) * DX/XK

pol!l =1, 10

J =12 -1

A = XK * DT/(CP * RHO * 2, * DX * DX)

P(J) = =(T(J) + A * (T(J+1) = 2. * T(J) + T(J=1)))
C(J) = a/(2. * A+ 1, - A * C(J*+1))

D(J) = C(J) * (A * D(J+1) - P(JI))I/A

END DO

T(2) = (C(2) * H - D(2))/(C(2) -~ 1.)

T(1) = (T(2) - D(2))/C(2)

00 J = 3, 12

T(J) = €(JI) * T(JI-1) + D(I)

END DO

TWPPP = TWPP

TWPP = TWP

TWP = TW

TH = (3, * T(1) ¢+ 6., * T(2) -~ T(3))/8.

100 FORMAT(2X, F6.1, 2%, 11(F€.0))
TYPE 100, ALT(K), TW. (T(M), M = 2, 11)

10 CONTINUE
a0 TO0 1
99 STOP
END
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